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Molecular dynamics simulations of the Debye-Waller effect in shocked copper
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We present an analysis of the directionally dependent x-ray structure factors (and, hence, intensities) pre-
dicted by nonequilibrium molecular dynamics simulations of statically compressed and shocked single crystals
of copper, and comment on the feasibility of using experimentally measured intensities to infer temperature
information. We further consider the behavior of the diffracted intensity from isentropically compressed

samples.
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I. INTRODUCTION

The use of x-ray diffraction to interrogate the structure of
shocked crystals on subnanosecond time scales is now a
well-established technique, with recent experimental results
providing some information on upper time limits necessary
for plastic flow within various materials,! as well as on the
underlying mechanisms of the widely studied shock-induced
a-€ transition in laser-compressed single crystals of iron.? In
parallel with the development of short-time-scale shock and
diffraction experiments, the prediction of the response of
matter to shock compression by means of nonequilibrium
molecular dynamics (NEMD) simulations has been a bur-
geoning field, with a similar concentration of interest in
shock-induced plasticity®* and phase transitions.>® With the
rapid increase in computing power and storage over recent
years, the length and time scale of such simulations are now
starting to become directly comparable with those of the la-
ser shock-compression experiments. The simulation of crys-
tals with spatial dimensions of a reasonable fraction of a
micron for durations of hundreds of picoseconds are now
quite feasible, if not entirely routine. This convergence of
scales has understandably led to direct comparisons being
made between the x-ray diffraction patterns predicted by the
NEMD simulations and those directly observed in experi-
ments. For example, Bringa et al.” recently used NEMD
simulations to calculate the shift in both the Bragg (reflected)
and Laue (transmitted) peaks in shock-compressed copper.
Their work provided information on the time-dependent
shape of the unit cell of a sample of shocked copper, which
in turn offers insight into plastic flow. Hawreliak et al.® di-
rectly compared the diffraction patterns predicted by NEMD
with the experimental data for the a-e transition in shocked
iron, noting, among many other things, good agreement be-
tween the predicted x-ray linewidths in the € phase and those
seen experimentally—an observation which is consistent
with the predicted mean size of two families of crystallites
with orthogonal ¢ axes.

However, while diffraction patterns have been simulated
by use of NEMD calculations, to date an analysis of them
has largely concentrated on the position or width of the dif-
fraction peaks, rather than explicitly their intensity. The in-
tensity of diffracted radiation associated with a particular
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Bragg peak (i.e., set of Miller indices) relative to the inten-
sity diffracted from an uncompressed sample will be a func-
tion of the local structure factor of the crystal, and this struc-
ture factor can be significantly altered by the action of shock
compression of the crystal. In particular, the reflectivity will
alter both due to the shock-induced temperature rise and the
compression. This temperature rise will influence the inten-
sity of a particular reflection owing to the well-known
Debye-Waller effect” as the increase in temperature results in
a larger rms displacement of a particular atom around its
mean position. However, the Debye-Waller factor is also a
function of the effective Debye temperature ®, and we note
that under compression ® will also change. For example, one
might normally expect compression to steepen the potential,
with a resultant increase in the effective Debye temperature,
which will tend to reduce the rms displacement of the atoms.
Such an increase in the effective Debye temperature would
tend to increase the structure factor at finite temperatures;
thus, the relative intensity of a particular Bragg reflection is
not entirely trivial to calculate.

In this paper we present an initial analysis of NEMD cal-
culations of the effect of shock compression on the expected
intensities of Bragg reflections. We present the analysis in
terms of effective Debye temperatures predicted by the
NEMD for uniaxially compressed, hydrostatically com-
pressed, and shock-compressed single crystals of copper, and
compare these results with those predicted by analytic
means. Given that the x-ray reflectivity is a function of tem-
perature, we comment on the feasibility of using reflectivities
as a temperature diagnostic of shocked crystals. Finally, as
rapid isentropic compression is an area of great topical inter-
est, we discuss the expected behavior of the relative x-ray
intensities of crystals subject to such loading, noting that the
x-ray reflectivity of higher diffraction orders can actually in-
crease under these conditions.

II. DEBYE-WALLER FACTOR

In the absence of phase transitions (which we do not con-
sider here), the main factor that will alter the relative inten-
sity of the angularly integrated x-rays within a given peak
will be the Debye-Waller factor, which is a function of both
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the temperature 7 and the effective Debye temperature ©.
The overall intensity of a particular reflection is a function of
many factors, including the degree of perfection of the crys-
tal. For a perfect crystal we must use dynamical diffraction
theory, whereas for completely imperfect crystals the kine-
matic approximation must be used.'® In each case, however,
the influence of a shock is twofold: first, the positions of the
peaks are altered, as the change in lattice spacing results in a
change in Bragg angle. For small one-dimensional compres-
sions, the change in the position of a particular peak is given
by a simple differentiation of Bragg’s law,

A(2d)
2d

Af=—tan 6 , (1)
where 6 is the Bragg angle associated with the plane of spac-
ing d. For large compressions, we must recalculate the angu-
lar position of the peak from the full form of Bragg’s law;
but in any case such a calculation is trivial and finding the
location of a particular reflection in the case where compres-
sion occurs along all three orthogonal directions (for ex-
ample, as a crystal changes from elastic toward hydrostatic
conditions under shock compression) is also not difficult.

The intensity of the peak, however, will depend on the
structure factor. Within the Debye-Waller theory, for a recip-
rocal lattice vector G, the structure factor Sé at a temperature
T, is given by

SG= 5S¢ exp(= M), (2)

where S% is the structure factor for the perfect, unheated
lattice, which is the sum over atoms at positions r; of the
atomic form factors f; over all atoms in the unit cell,

S¢ =2 fiexp(=iG -;). (3)

Note that for the compressions we consider here, there
should be no change in the atomic form factor: we are not
dealing with conditions such that pressure ionization occurs.
The atomic form factor is, however, angularly dependent,
and this should be taken into account when calculating real
intensities. The temperature dependence enters into the factor
M in Eq. (2). In the kinematic limit the intensity I of a
particular reflection is proportional to the square of the struc-
ture factor, and thus,

I(T) =1(0)exp(— 2M), 4)
where
m{z (9) 1]
M== e |o®\7) 1) ®)
and
D(y) =+ f T ©6)
yJg e -1

T is the temperature in kelvin, £ is Planck’s constant, N, is
Avogadro’s number, m is the atomic mass, and kp is Boltz-
mann’s constant. For the sake of brevity, as we are only
presenting the simple Debye theory for reasons of illustra-
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tion, we have assumed an isotropic solid, which is also valid
for a cubic system due to the manner in which the resolved
displacement is summed. In an anisotropically compressed
crystal, there will be a directional dependence.

In the normal Debye theory the function ®(y) takes into
account that the phonon modes in the crystal are populated
according to Bose-Einstein statistics, and the factor of 1/4 in
Eq. (5) takes into account zero-point motion. Clearly in clas-
sical NEMD calculations such as those we present here, this
is not appropriate, and the vibrational modes present within
the simulation obey Boltzmann statistics. In the simulations
in this paper we calculate the effect of compression and tem-
perature on Bragg reflections by calculating the Fourier
transform of the atomic coordinates provided by the NEMD
simulations. Integration in reciprocal space around particular
Bragg reflections provides a relative measure of the x-ray
structure factor for the reflection in question, and the varia-
tion of this integral with reciprocal lattice vector for a par-
ticular temperature can be used to deduce an effective Debye
temperature. As the NEMD simulations are classical, when
quoting an effective Debye temperature, it will be related to
the exponential falloff in integrated intensity by

3h2NA|G|2[ T]
M= L

7

III. ANALYTIC CALCULATIONS

The main thrust of this paper is to use NEMD simulations
as a tool to investigate how the intensity of x-rays diffracted
by crystals is affected by temperature and compression.
However, both as a comparison with NEMD simulations and
as a tool in its own right, we can also use analytic models
based on previously published forms of the Griineisen pa-
rameter to predict the manner in which compression affects
the Debye temperature. The Griineisen parameter I" used in
the Griineisen equation of state is defined as

dln®
rwv)y=- , 8
W) dlnV ®
and thus,
C) JV r'(v) )
— =exp| - —dV|, 9)
0 ( v, V

where V is the volume.

We investigate four different forms of I'(V) for copper.
The simplest model is to assume that I'/V is constant.'l:1?
More generally, the Griineisen parameter can be expressed as
a power of the volume. Pandya et al.'> used a theoretical
model based in perturbation theory taking into account terms
due to the atomic orbitals of the material. Ramakrishnan et
al.'* gave an empirical result based on measuring how the
temperature of a sample is affected by adiabatic pressure
changes. The compressions used in that study were low com-
pared with the regime normally probed by shock experi-
ments. These three models can be summarized as all being of
the form
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FIG. 1. Debye temperature as a function of compression calcu-
lated from MD and analytic models. The lines represent the analytic
models from literature, and the points represent the results from
MD simulations of the hydrostatic and uniaxial case (compressed
along [001]). Results parallel and perpendicular to the compression
direction are shown separately.

rw) =FO<V1)Q, (10)

o

with the following values of I'y and ¢ for copper: (I'y
=198, ¢=1.0),'"12 ([,=1.93, ¢=1.085),"* and (T,
=2.008, ¢=1.33)."4

The fourth model which we shall consider is that provided
by Walsh et al.,'> who used experimental Hugoniot data in
conjunction with the Mie—Griineisen equation of state to de-
duce a polynomial fit for the Griineisen parameter as a func-
tion of volume,

1% v, 2 1% 3
F(V):I‘O+A<—”—1>+B<—”— 1) +C(—0— 1) ,
1% v 1%

(11)

where for copper they found I'j=2.04, A=-3.296, B
=10.493, and C=-19.264. We note that Walsh et al.'> per-
formed experiments on long time scales compared with the
NEMD calculations, and the Hugoniot elastic limit (HEL) of
copper was small compared with the pressures of interest;
thus, their Griineisen parameter corresponds to that which
one might expect for close to hydrostatic compression of the
lattice.

The four models for the Griineisen parameter are used to
predict the Debye temperature as a function of hydrostatic
compression. All four are plotted alongside the NEMD hy-
drostatic and uniaxial compression data in Fig. 1, and we
discuss how they compare with NEMD predictions in Sec.
Iv.
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IV. MOLECULAR DYNAMICS CALCULATIONS

The intensity of x-rays scattered by a crystal (neglecting
the effects of absorption and extinction) can be calculated
from NEMD by taking the Fourier transform of the atomic
coordinates at a particular moment in time. This gives the
intensity in k space, I(k),
> exp(—ik-r)) 2,
J

I(k) = (12)

where now the sum is over all of the atomic positions in the
simulation. For a particular experimental geometry, the over-
all structure factor associated with a given incident x-ray
with wave vector k( and a scattered x-ray with wave vector
K, can be found by using k=Kk,—K,. Note that Eq. (12) is a
sum over specific coordinates; thus, we have not explicitly
taken into account the dependence of the atomic form factor
on scattering angle, but as this is tabulated'® it can also be
included in explicit intensity calculations if necessary. While
fast Fourier transform techniques can do this Fourier trans-
form over the whole of the meaningful region of k space,!’
here we are only interested in the regions of intensity
maxima surrounding specific Bragg reflections, and in this
case it was computationally efficient to use a simple, rather
than fast, Fourier transform. For all of the NEMD simula-
tions presented here, the atomic coordinates were calculated
using the MD code LAMMPS, '8 with the copper sample simu-
lated using Mishin’s EAM1 potential.'®

A. Debye temperature: Uncompressed sample

In the simple Debye theory the Debye temperature itself
is independent of temperature. As a first test of the predic-
tions of the NEMD simulations, we calculated the Fourier
transform of the atomic positions of an uncompressed
sample at different temperatures and calculated the Debye
temperature from the predicted x-ray reflectivities (i.e., from
the relative integrated intensity of the Bragg peaks in recip-
rocal space). A 60 X 60 X 60 conventional cell sample of cop-
per with lattice parameter a=3.615 A was thermalized for
10 ps with periodic boundary conditions at temperatures T
=300, 600, 900, and 1200 K.

According to Eq. (5) we expect that the logarithm of the
integrated intensity is proportional to (=|G|*7/®?2). Thus, in
Fig. 2 we plot the logarithm of the integrated intensity of the
Bragg peaks as a function of |G|? for a variety of tempera-
tures, and the gradient of this line provides the Debye tem-
perature. From this (Fig. 2) a value for the Debye tempera-
ture was calculated (see Table I). The average agrees well
with literature values, indicating the applicability of the
Mishin potential. The calculated Debye temperature de-
creases slightly as the temperature of the sample is increased.
This is possibly due to the atoms exploring further into the
anharmonic region of the potential as the temperature is in-
creased.

B. Uniaxially compressed samples

To date NEMD simulations of the shock compression of
single metal crystals predict elastic limits far higher than
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FIG. 2. MD simulations of the relative intensity of diffracted
peaks as a function of reciprocal lattice vector for an uncompressed
copper crystal.

those seen in the majority of experiments. Indeed, the elastic
limits are consistent with the theoretical limiting shear
strength of a solid under compression and are typically up to
2 orders of magnitude higher than seen in long-time-scale
(hundreds of nanoseconds) experiments. For example, in the
work of Bringa et al.,” when a single crystal of copper simu-
lated with the Mishin potential is shocked along the principal
axis, completely elastic compression is seen up to compres-
sions of order 15%, corresponding to pressures of order 350
kbar. While the addition of defects and a ramped pressure
drive can somewhat reduce this value,’ it is clear that at
present NEMD simulations predict that very high elastic re-
sponse can be observed on short time scales. We note also
that for bce crystals of iron, close to purely elastic response
has been observed experimentally up to compressions of
6%, in agreement with NEMD calculations.?!

Thus, before simulating the change in intensities due to
shock compression, in this section we consider how uniaxial
elastic compression along a cube axis of a copper single
crystal alters the calculated x-ray reflectivities. As in Sec.
IV A, 864 000 atoms were taken, and for a variety of
uniaxial compressions up to 12%, thermalized at 300 K. The
crystal was compressed along the [001] axis, and the inte-

TABLE I. The Debye temperature calculated from samples ther-
malized at different temperatures.

T/'K 0/K
300 322
600 321
900 316
1200 310
Average 317
Literature 315
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FIG. 3. Stress along the x axis (o) and the z axis (o ,) calcu-
lated from NEMD simulations of low-temperature Cu for compres-
sion along the [001] direction.

grated reflectivities of Bragg spots in k space were calculated
for the reflections corresponding to directions both along and
perpendicular to the compression axis. From the variation of
reflectivity with the square of the reciprocal lattice vector, a
Debye temperature was again calculated. The Debye tem-
peratures for the directions parallel and perpendicular to the
compression are shown in Fig. 1, where they have been nor-
malized to the Debye temperature for the uncompressed case
discussed above. We note that, as expected with a steepening
of the potential under compression, the Debye temperature
increases roughly linearly under compression.

It can be seen, however, that for compressions above
about 9%, there is a radical change in the Debye tempera-
tures. Above this point the Debye temperature reduces with
compression along the compression direction, such that
above 11% compression it is significantly lower in the com-
pression direction than in the orthogonal direction. This is
counterintuitive as one might expect that constraining the
atoms in one direction would increase the effective Debye
temperature for that direction.

This more complex behavior of the Debye temperatures is
due to the effect of the Bain path. It is well known that
uniaxial compression of a face-centered-cubic lattice along
the [001] direction by a factor of 1/y2 leads to a body-
centered-cubic lattice, for which the shear stress must be
zero. The stresses in the compression direction, o, and in
the orthogonal direction, o, as a function of uniaxial com-
pression along the z direction are shown in Fig. 3. These
results were determined for a 10X 10 X 10 conventional unit
cell sample simulation compressed in a canonical ensemble
at 5X 107 K to make temperature effects negligible and
prevent shear relaxation by dislocations. As expected, the
stresses are equal at the volume at which the lattice becomes
body-centered-cubic. Between this point and zero compres-
sion, the stress in the compression direction is higher than
that in the orthogonal direction, as expected. However, the

014109-4



MOLECULAR DYNAMICS SIMULATIONS OF THE DEBYE-...

H
o
o

z
[ =
o]
g | ;
by ¢ ® ¢ Cy
3 i * ¢ o Cy ]
& .
. . . .
= . ¢
9 .
2300 e . ¢ |
o $ . o000
i .
€ § . ¢ * 7
g .
g . ..

200 1 1 L

0.8 0.85 0.9 0.95 1
VNo

FIG. 4. Cy, and C53 components of the elastic modulus tensor as
a function of compression deduced from gradients of Fig. 3.

Mishin potential predicts that while the gradient of o, in-
creases monotonically with compression along the z direc-
tion, this is not the case for o,. From these gradients we
calculate the Cy3 and Cs3 components of the elastic modulus
tensor. As cubic symmetry is lost on uniaxial compression,
there are more than three independent terms in this tensor. In
Fig. 4 we plot these elastic modulus terms as a function of
uniaxial compression along z. It is evident that the maximum
in the stiffness in the z direction occurs at the same compres-
sion as the maximum in the Debye temperature deduced
from the integration of the intensities in k space.

C. Hydrostatically compressed samples

At high shock compressions of face-centered-cubic per-
fect single crystals, NEMD simulations predict the homoge-
neous generation of defects at the shock front, the motion of
which can alleviate the shear stress. This results in the lattice
tending toward the hydrostatic state, although the strength of
the material may support some residual shear stress and pre-
vent it from becoming completely hydrostatic. It should be
noted that this remains an area of active interest: the mecha-
nism of defect generation and motion has been predicted to
be a function of the direction of shock compression. Com-
pression of single crystals along the [001] direction activates
a partial dislocation resulting in a stacking fault; in contrast
compression along the [111] direction results in full disloca-
tions via two partial loops.?? In any case, for perfect crystals
the elastic limit is extremely high compared with values
found experimentally on longer time scales. As noted in Sec.
IV B, Bringa et al.” showed that pre-existing defects can re-
duce the effective elastic limit, although no simulation has
yet been performed that reproduces the comparatively low
elastic limits seen in long-time-scale experiments.

However, in any case the generation and motion of the
defects acts so as to remove the shear stress, and the lattice
which is initially tetragonal with a large aspect ratio under
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elastic compression tends more toward a compressed cube as
the shear stress is released and the hydrostat approached.? It
is thus of interest to use the NEMD simulations to calculate
the effective x-ray Debye temperatures for hydrostatically
compressed samples. These Debye temperatures, deduced by
identical means to those outlined in Sec. IV A, are shown
alongside analytically fitted Griineisen parameters in Fig. 1.
It can be seen that these more closely follow the higher com-
pression Griineisen parameter predictions, and reasonable
agreement with the analytic model based on experimental
data of Walsh et al.'> is seen for larger compressions.

D. Shock-compressed samples

Under shock compression we not only expect the Debye
temperature to change, but we also expect a rise in tempera-
ture. We stress that as these simulations have been performed
with shock compression of a perfect copper crystal along the
[001] axis, stacking faults are not generated at the shock
front until compressions in excess of 15%.

The simulated sample was a 30X 30X 130 conventional
cell crystal oriented with the principal axis along x, y, and z
with periodic boundary conditions in the x and y directions
and shrink wrapped boundary in the z direction. This was
thermalized to 293 K to match the experimental parameters
of Walsh et al.'> To generate the shock all atoms within five
lattice parameters of z=0 were fixed together and then driven
as a unit into the crystal in the positive z direction at the
desired shock speed (U[,=108, 181, 362, 542, 651, 687, and
723 ms™'). A 30X30X30 conventional unit cell section
situated 80 conventional cells behind the shock front when it
reached the other end of the crystal was used to calculate the
corresponding reciprocal space intensity.

We note that the samples considered here, which were
initially thermalized to room temperature, predict an increase
in the diffracted intensity for higher-order reflections for low
shock compressions. Only once we reach compressions of
between 7% and 10% do we start to observe a decrease in the
diffracted intensity. Physically this corresponds to the con-
straining of the atoms by the increased steepness of the po-
tential under compression being more important than any
temperature rise associated with the compression. As the
Hugoniot for a weak shock lies very close to the isentrope,
we shall return to this point when we discuss isentropic com-
pression in Sec. V.

The data of Walsh et al.' described in Sec. III can also be
used to predict the change in intensity under shock compres-
sion, as Walsh ef al. also used the experimental data to pre-
dict the temperature rise as a function of shock compression,
as well as the compression-dependent Griineisen parameter.
The falloff in diffracted intensity as a function of the relative
volume according to the data of Walsh et al. is shown for
copper in Fig. 5, alongside the NEMD predictions. It can be
seen that the model of Walsh et al. exhibits qualitatively the
same response as the NEMD shock simulations.

Shocking the sample to a point above the Hugoniot elastic
limit generated a large number of dislocations. These have
the effect of broadening the peaks in reciprocal space, par-
ticularly the higher-order peaks (see Fig. 6). To calculate the
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FIG. 5. Exponent of the Debye-Waller factor per reciprocal vec-
tor squared (-2M/|G|?) for copper shocked to V/V, times its origi-
nal volume, calculated from MD simulations of single crystals
shocked along the principle axis and from data of Walsh er al. (Ref.
15).

intensity in reciprocal space, a 1.9 X 10% atom block was
taken from the shocked region and the Fourier transform of
the atomic coordinates calculated. Integrating over the result-
ant Bragg peaks and subtracting the background gives a re-
sult close to the prediction based on the figures of Walsh et
al.’> (the data point labeled “Dislocations Present” in Fig. 5).
Due to the relaxation of the shear stress by the generation
and motion of the dislocations, there is no noticeable direc-
tional dependence in the Debye-Waller factor within the er-
ror bars.

E. Strong-shock limit

In the strong-shock regime, where the velocity of the plas-
tic wave exceeds that of the elastic wave it is usually found
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FIG. 6. (Color online) Intensity in the plane in k space corre-
sponding to the [100] plane intersecting with the origin for a MD
simulation of a shock in the [001] direction to above the Hugoniot
elastic limit (HEL).
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FIG. 7. Log-log plot of Debye temperature vs compression for
MD simulated copper sample compressed hydrostatically fitted with
a polynomial. The gradient gives the Griineisen parameter.

that the shock speed Uj is related to the particle velocity U,
by

Us=C0+SlUp’ (13)

where s; is a constant and C; is close to the bulk sound
speed. It can be shown that the Griineisen parameter is a
function of the volumetric compressive strain, e=1-V/V,,
and s, such that in the limit of €=0, I'=2s,-1.2%** Further-
more, the observation that s, is a constant for strong shocks
implies that there is a limit to the compression,” e=1/s,,
and that at this limiting compression I'=2(s;—1). Therefore
at the limiting compression under shock conditions, the Grii-
neisen parameter is exactly 1 less than under ambient condi-
tions.

In order to test how well the Debye temperatures deduced
from the NEMD obey the above relations, we plotted © as a
function of hydrostatic compression, as shown in Fig. 7. The
atomic coordinates were generated by setting up an ideal
60 X 60 X 60 conventional cell crystal already compressed by
decreasing the lattice parameter and then thermalizing this to
300 K.

The data were fitted with a polynomial

In(®) =A[- In(V/V)* + Bl-In(VIV))]+ C,  (14)

which yielded the coefficients A=-0.56*0.01, B
=1.71%0.03, and C=5.76 =0.02. This upon differentiation
yields

F:—Mz—ZA In(V/V,) + B. (15)

d In(VIVy)

Thus, for €=0, we deduce I'=1.71+0.03, which we note is
in reasonable agreement with the analytic Griineisen coeffi-
cients discussed in Sec. III, and experiments give a value of
51=1.489,%3 which implies I'=1.98. This experimental value
of s; implies a limiting compression of 0.67. If we solve Eq.

014109-6



MOLECULAR DYNAMICS SIMULATIONS OF THE DEBYE-...

(15) for '=0.71, i.e., 1 less than the value under ambient
conditions, we deduce a limiting compression of 0.59 = 0.03,
which is lower than the experimental figure, but it should be
noted that this is a very high compression, and we would not
necessarily expect the potential used in the NEMD to be
valid at the high shock pressures necessary to asymptote to-
ward this value.

V. ISENTROPIC COMPRESSION

The possibility of compressing a crystal along an isen-
trope, via ramped compression, has attracted considerable
attention in recent years,’®?’ as such a technique may allow
the creation of solid state matter at compressions far in ex-
cess of those achievable in diamond anvil cells.

Given the growing interest in isentropic compression on
short time scales and the stated desire by some workers to
diagnose the lattice compressed in such a way via x-ray dif-
fraction, it is clearly of relevance to explore how we would
expect the Debye-Waller factor to behave under such condi-
tions. In this section we show that very simple considerations
indicate that for a sample compressed at finite temperature,
we would actually expect an increase in the intensity of the
higher-order diffraction peaks.

Let us consider a simple model of a solid, where we take
the Griineisen parameter to be constant. In such a model

9_(1)‘F
0, \V/ ’

and along an isentrope

T_ (K)‘F
Ty \Vo/ =
If Gy is the reciprocal lattice vector of a particular reflection
under ambient conditions, then G=G(V/V,)~"* for hydro-

static compression. Now the exponent in the Debye-Waller
factor M scales as

(16)

(17)

2 2 [r-2/3]
M |G|2T " |Go|2T0<X) ’ (18)
Ch Vo
and thus
M \% [T-2/3]
F(?) | 19
0 0

Thus, as I'>2/3, we find that M decreases under com-
pression, and as the intensity of a Bragg peak is proportional
to exp(—2M) in the kinematic limit, at finite temperatures we
expect an increase in diffracted intensity under isentropic
compression.

The physical reason for this increase in reflectivity is that
under isentropic compression the increase in the stiffness of
the lattice is a more important effect than the temperature
rise. For, although the thermal energy of an atom is in-
creased, the rms amplitude of its vibration not only decreases
in absolute terms, but, importantly for the intensity of dif-
fracted radiation, actually decreases as a fraction of the lat-
tice spacing even though the lattice is being compressed. For
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FIG. 8. Exponent of Debye-Waller factor per reciprocal vector
squared for copper compressed via shock compression (circles) and
isentropic compression (squares). Values are calculated from data of
Walsh et al. (Ref. 15).

small compressions the shock adiabat lies close to the isen-
trope, and thus we would expect that for small shock com-
pressions, starting at finite temperature, there is actually an
increase in the reflectivity of higher-order reflections. For the
case of copper here, only once the compression due to the
shock exceeds ~10% does the increase in temperature start
to dominate over the increased strength of the lattice and the
structure factor start to decrease. This effect can also be seen
in Fig. 5.

Walsh et al."> used a Mie—Griineisen equation of state to
calculate isentropic figures for temperature and compression.
By using these, the Debye temperature can be calculated and
the Debye-Waller factor deduced (see Fig. 8). These agree
with our prediction that the intensity of the diffracted signal
increases the more the material is compressed isentropically.

VI. RELATION TO EXPERIMENTS

Given that x-ray diffraction experiments on picosecond
and nanosecond time scales are currently being performed, it
is useful to consider to what degree the effects discussed
above may be observable experimentally. Our analysis has
concentrated on the degree to which the Debye-Waller factor
is altered by shock compression, insomuch that the tempera-
ture of the lattice changes, but so also does its effective De-
bye temperature. As the Debye-Waller factor M is propor-
tional to the square of the reciprocal lattice vector, it is
evident that the effects will be most apparent for high-order
reflections, which in turn require high-energy, short-
wavelength x-rays in order to be observed.

In the field of laser-plasma interactions, where much of
the work on time-resolved diffraction from shocked samples
is being performed, x-rays of durations ranging from a few
tens of picoseconds to several nanoseconds can be produced
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by focusing high power optical radiation to intensities of
order 10'*-~10'® W cm™ onto solid targets. In such experi-
ments, the x-rays are emitted from transitions within highly
ionized atoms; and typically in the past the resonance line of
helium-like ions has been used. Given the laser energies and
intensities available with the systems that have been used for
shock compression and diffraction experiments, the highest
photon energies used to date correspond to the helium reso-
nance line of copper at 8.4 keV (although it has been shown
that this could be extended to the resonance line of He-like
Ge).28

On the other hand, in the picosecond and subpicosecond
regime, the huge intensities that can be produced
>10'"" W cm™? induce the excitation and breaking of plasma
waves, resulting in short bursts of energetic electrons pen-
etrating the underlying target, producing a short burst of K«
emission in an analogous manner to a conventional x-ray
tube. It has been shown that such techniques can readily
produce K-shell radiation up to 22 ke V.2 With such radiation
sources, in principle at least, it should be possible to record
reflections from copper crystals with Miller indices up to
Vh2+k*+1? of order 12. For an unshocked sample at room
temperature, assuming a Debye temperature of 315 K, we
would expect the intensity of such orders to be 2.8% of the
(002) reflections (taking into account the dependence of the
atomic form factor on scattering angle). If copper was
shocked to 0.8 times its original volume, the ratio of the
(579) to the (002) peak would be almost 2.5 times less than
would be expected for the uncompressed sample at room
temperature.

For the case of distinguishing between isentropic and
shock compression the figures are even more promising.
Consider copper compressed to 0.8 times its original volume.
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If it is compressed isentropically, the ratio of the (579) peak
to the (002) peak will be more than ten times larger than if it
is shocked to the same compression.

It is clear that the temperature affects the intensity of the
diffraction patterns markedly. The problem lies in separating
this effect from the compression effect. The compression it-
self can be measured readily from the peak shift but the
limiting factor is deducing what effect this has on the Debye
temperature.

VII. SUMMARY

The effect of temperature on the diffraction pattern of a
shocked sample has been investigated through the use of
NEMD and also by examining empirical and theoretical fits
to the Griineisen parameter from literature values. These two
approaches give qualitatively similar results. It is apparent
that the temperature has a significant effect on the intensity
of the diffracted peak. However the effect is complicated by
the effect of compression. This means that the Debye-Waller
factor gives the combined effect of the temperature and De-
bye temperature. In order to isolate the temperature, the De-
bye temperature must first be deduced and this requires an
accurate form for the Griineisen parameter. Even without this
parameter, the combined effect gives a figure for (7/0?)
which in itself may be interesting.
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